Brief information about the project

Name of the project	AP14871683 Biotechnology of processing keratin by-
	products using immobilized thermophilic bacteria. (0122PK00618)
Relevance	The idea of the project is the construction and use of a
itele vullee	consortium of thermonhilic hacteria with keratinolytic
	activity for the processing of keratin-containing waste
	from the poultry processing industry. The consortium will
	he formed from biocompatible strains with proteases of
	different families (disulfide reductases and keratinases)
	This will ensure a gradual and more efficient
	biodegradation of raw materials into a hydrolyzate
	containing soluble protein pentides and amino acids
Purpose	Developing a technology for processing keratin by-
	products of poultry farming into protein hydrolysate by
	bioconversion with immobilized thermonbilic bacteria
Objectives	1 Screening of keratinolytic thermophilic bacteria
	2 Selection of the method of KLBC immobilization into
	the matrix - bacterial cellulose (BC) and the conditions for
	its cultivation.
	3. Obtaining a biological product - a dry hydrolyzate of
	KBP.
	4. Semi-industrial approbation and development of
	technical documentation for a biological product.
Expected and achieved results	As a result of the implementation of this project, the
-	following results were obtained:
	1. Screening of keratinolytic thermophilic bacteria.
	Screening against the GenBank and RDP-II databases
	showed that the studied strains belong to the following
	systematic groups Bacteria; Firmicutes; Bacilli;
	Bacillales; Bacillaceae; Bacillus.
	1.1. The rate of KBP hydrolysis by different strains of
	thermophiles and their enzymatic activity was determined.
	The active 8 strains were selected that grew on keratins and
	were able to almost completely hydrolyze them.
	1.2. A genomic analysis of the similarity of amino acid
	sequences of proteins of strains with keratinolytic activity
	was carried out.
	2 An immobilized KI PC has been errored that comise out
	2. An initiounized KLDC has been created that carries out bioconversion of the KRP
	The bacteria were identified based on molecular cenetic
	methods of the 16s RNA fragment and their percentage
	homology by the nucleotide sequence of the strains was
	also determined Technologies for the immobilization of
	cells into bacterial cellulose have been developed and
	various methods of modifying the surface of the matrix
	have been performed to maximize the loading of
	keratinolytic bacteria.

	2.1 Salastad active strains were identified and their
	2.1. Selected active strains were identified and their
	biocompatibility was determined.
	Identification of microorganisms based on molecular
	genetic methods of the 16s RNA fragment. Their
	percentage homology was determined by the nucleotide
	sequence of the strains.
	2.2. A method for immobilizing KLBC into the BC matrix
	has been selected.
	The selection of a method for immobilizing keratinolytic
	bacteria into a bacterial cellulose matrix was carried out for
	the effective bioconversion of feather and lint waste.
	2.3. The dependence of the degree of keratin hydrolysis
	(ratio of amine to total nitrogen pentides amino acids) on
	temperature pH and fermentation time was determined
	The optimal parameters for the bioconversion of feather
	and down waste were selected using immebilized KLPC
	and down waste were selected using minibolitzed KEDC at a termonetry of 65% at a reliable of 7.1.7.5 formentation
	at a temperature of 05 C, at a pri of 7.1-7.5, termentation
	periods fasted from 72 nours to 144 nours.
	Expected results:
	3. Technologies will be developed for obtaining the target
	product - dry protein hydrolyzate KPB. A package of
	technological documents will be developed.
	3.1. The influence of the parameters of spray drying of the
	hydrolysate (temperature, aspiration, rate of solution
	supply to the installation) on the physical qualities of the
	hydrolysate (mass fraction of moisture, particle size) will
	be studied.
	3.2. Parameters of physiological effectiveness (in vitro
	digestibility) and the safety of the hydrolysate will be
	determined according to microbiological indicators
	(pathogenic, conditionally pathogenic and sanitary-
	indicative microorganisms) and the content of toxic
	elements (copper, lead, zinc and cadmium).
	3.3. Production testing will be carried out in a mini-
	production environment A process for obtaining dry KPB
	hydrolysate will be developed. Technical and regulatory
	documentation will be developed. Teeninear and regaratory
Research team members with	1 Kistaubayeya A S – Candidate of biological
their identifiers (Scopus Author	sciences associate professor h-index 8: Scopus author ID
ID Researcher ID ORCID if	57107801138: http://orgid.org/0000-0002-0385-7155:
available) and links to relevant	$\frac{57197801156}{PassarcharID E 5542 2012}$
available) and miks to relevant	Researchering F-5542-2015.
promes	2. Savitskaya I. S. – Doctor of Biological Sciences, Dependence h index 10: CiteInd 252, Science author ID
	26705210600, https://orgid.org/0000.0002.2417.8462;
	$\frac{36705310600}{\text{Decomplex ID}} = 1000000000000000000000000000000000000$
	Kesearcher ID F-3342-2013.
	5. Karpenyuk I.A. – Doctor of Biological Sciences,
	Professor. II- maex 5, Scopus Author ID 55550041100,
	OKCID <u>nups://orcid.org/0000-0002-6985-/112.</u>
	$\frac{\text{Researcherin } P-7980-2014}{4 - Complements A - V} = Complements A - V$
	4. Goncharova A.V. – Candidate of biological
	sciences, associate professor. h-index 2, Scopus Author ID

	56450694300, ORCID https://orcid.org/0000-0002-1217-
	<u>9613</u> , ResearcherID P-7986-2014.
	5. Ignatova L.V. – Candidate of biological sciences,
	associate professor. h- index 6; Scopus Author ID
	<u>57216761870</u> .
	6. Shokatayeva D.Kh. – PhD, h-index 5; <u>Scopus</u>
	author ID 57197794315.
	7. Talipova A.B Master of Technical Sciences. h-
	index 3; Scopus author ID 57211535311;
	https://orcid.org/0000-0001-6874-5760.
	8. Abdulzhanova M.A. – Master of Technical
	Sciences. h-index 2; Scopus author ID 57211532475.
	9. Mashzhan A.S. – Master of Technical Sciences. h-
	index 2; Scopus Author ID 57211535534;
	https://orcid.org/0000-0002-9516-5566.
List of publications with links to	1. А.Ж. Ізмұқан, А.С. Кистаубаева, А.С. Машжан, Н.
them	Биркеланд, И.С. Савицкая. Исследование продуцентов
	термозимов, выделенных из Жаркентского
	геотермального источника // Микробиология және
	вирусология 2022, 4(39). – Р. 104-122.
	2. A.Mashzhan, A. Kistaubayeva, R. Javier-López, U.
	Bissenova, A. Bissenbay, N.Birkeland / International
	Journal of systematic and evolutionary microbiology
	2024. DOI 10.1099/ijsem.0.006269. (Q1).
Patents	-

